
107

■ ■ ■

C H A P T E R 8

The Theme System

Changing the HTML or other markup that Drupal produces requires esoteric knowledge of
the layers that make up the theme system. The theme system is an elegant architecture that’ll
keep you from hacking core code, but it does have a learning curve, especially when you’re
trying to make your Drupal site look different from other Drupal sites. We’ll teach you how the
theme system works and reveal some of the best practices hiding within the Drupal core. Here’s the
first one: you don’t need to (nor should you) edit the HTML within module files to change
the look and feel of your site. By doing that, you’ve just created your own proprietary content
management system, and have thus lost one the biggest advantages of using a community-
supported open source software system to begin with. Override, don’t change!

Theme System Components
The theme system comprises several levels of abstraction: template languages, theme engines,
and themes.

Template Languages and Theme Engines
The theme system is abstracted to work with most templating languages. Smarty, PHPTAL, and
XTemplate can all be used to fill template files with dynamic data within Drupal. To use these
languages, a wrapper, called a theme engine, is needed to interface Drupal with the corresponding
template language. You can find theme engines for the big players of templating languages at
http://drupal.org/project/Theme+engines. You install theme engines by placing the respec-
tive theme engine directory inside the engine directory for your site at sites/sitename/themes/
engine. To have the theme engine accessible to all sites in a multisite setup, place the theme
engine directory inside sites/all/themes/engine as shown in Figure 8-1.

The Drupal community has created its own theme engine, optimized for Drupal. It’s called
PHPTemplate, and it relies on PHP to function as the templating language, which removes the
intermediary parsing step other template languages usually go through. This is the most widely
supported template engine for Drupal and ships with the core distribution. It’s located at
themes/engine/phptemplate, as shown in Figure 8-2.

Westgate_755-9C08.fm Page 107 Wednesday, March 21, 2007 1:44 PM

108 C H A P T E R 8 ■ T H E T H E M E SY S T E M

Figure 8-1. Directory structure for adding custom theme engines to Drupal

Figure 8-2. Directory structure for Drupal core theme engines. This location is reserved for core
theme engines.

■Note It’s entirely possible to skip using a templating language altogether and simply use pure PHP template
files. If you’re a speed freak or maybe just want to torture your designers, you can even skip using a theme
engine and just wrap your entire theme inside PHP functions. For an example of a PHP-based theme, see
themes/chameleon/chameleon.theme.

Westgate_755-9C08.fm Page 108 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 109

Don’t expect to see any change to your site after dropping in a new theme engine. Because
theme engines are only an interface library, you’ll also need to install a Drupal theme that
depends on that engine before the theme engine will be used.

Which template language should you use? If you’re converting a legacy site, perhaps it’s
easier to use the previous template language, or maybe your design team is more comfortable
working within WYSIWYG editors, in which case PHPTAL is a good choice because it prevents
templates from being mangled within those editors. You’ll find the most documentation and
support for PHPTemplate, and if you’re building a new site it’s probably your best bet in terms
of long-term maintenance and community support.

Themes
In Drupal-speak, themes are a collection of files that make up the look and feel of your site. You
can download preconstructed themes from http://drupal.org/project/Themes, or you can
roll your own, which is what you’ll learn to do in this chapter. Themes are made up of most of
the things you’d expect to see as a web designer: style sheets, images, JavaScript files, and so
on. The difference you’ll find between a Drupal theme and a plain HTML site is template files.
These files typically contain large sections of HTML and smaller special snippets that are
replaced by dynamic content. The syntax of a template file depends on the theme engine that’s
powering them. For example, take the three snippets of template files in Listings 8-1, 8-2, and
8-3, which output the exact same HTML but contain radically different template file content.

Listing 8-1. Smarty

<div id="top-nav">
 {if count($secondary_links)}
 <ul id="secondary">

 {theme function='links' data=$secondary_links delimiter="\n "}

 {/if}

 {if count($primary_links)}
 <ul id="primary">

 {theme function='links' data=$primary_links delimiter="\n "}

 {/if}
</div>

Westgate_755-9C08.fm Page 109 Wednesday, March 21, 2007 1:44 PM

110 C H A P T E R 8 ■ T H E T H E M E SY S T E M

Listing 8-2. PHPTAL

<div id="top-nav">
 <ul tal:condition="php:is_array(secondary_links)" id="secondary">
 <li tal:repeat="link secondary_links" tal:content="link">secondary link

 <ul tal:condition="php:is_array(primary_links)" id="primary">
 <li tal:repeat="link primary_links" tal:content="link">primary link

</div>

Listing 8-3. PHPTemplate

<div id="top-nav">
 <?php if (count($secondary_links)) : ?>
 <ul id="secondary">
 <?php foreach ($secondary_links as $link): ?>
 <?php print $link?>
 <?php endforeach; ?>

 <?php endif; ?>
 <?php if (count($primary_links)) : ?>
 <ul id="primary">
 <?php foreach ($primary_links as $link): ?>
 <?php print $link?>
 <?php endforeach; ?>

 <?php endif; ?>
</div>

Each template file will look different based on the template language in use. The file extension
of a template file is also a dead giveaway to the template language, and thus the theme engine
it depends on (see Table 8-1).

* PHPTemplate is Drupal’s default theme engine.

Table 8-1. Template File Extensions Indicate the Template Language They Depend On

Template File Extension Theme Engine

.theme PHP

.tpl.php PHPTemplate*

.tal PHPTAL

.tpl Smarty

Westgate_755-9C08.fm Page 110 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 111

Installing a Theme
To have a new theme show up within the Drupal administrative interface, you should place it
in sites/sitename/themes. To have the theme accessible to all sites on a multisite setup, place
the theme in sites/all/themes. You can install as many themes as you want on your site, and
themes are installed in much the same way modules are. Once the theme files are in place,
navigate over to the administrative interface via Administer ➤ Site building ➤ Themes. You
can install and enable multiple themes at once. What does that mean? By enabling multiple
themes, users will be able to select one of the enabled themes from within their profile, and
that’s the theme that will be used when the user browses the site.

When downloading or creating a new theme, it’s a best practice to keep the new theme
separate from the rest of the core and contributed themes. We recommend creating another
level of folders inside your themes folder. Place custom themes inside a folder named custom,
and themes downloaded from the Drupal contributions repository inside a folder named
drupal-contrib.

Building a PHPTemplate Theme
There are a couple basic ways to create a theme, depending on your starting materials. Suppose
your designer has already given you the HTML and CSS for the site. How easy is it to take the
designer’s design and convert it into a Drupal theme? It’s actually not that bad, and you can
probably get 80 percent of the way there in short order. The other 20 percent—the final nips
and tucks—are what set apart Drupal theming ninjas from lackeys. So let’s knock out the easy
parts first.

■Note If you’re starting your design from scratch, there are many great designs at the Open Source Web
Design site at http://www.oswd.org/. (Note that these are HTML and CSS designs, not Drupal themes.)

Let’s assume you’re given the HTML page and style sheet in Listings 8-4 and 8-5 to convert
to a Drupal theme. Obviously the files you’d receive in a real project would be more detailed
than these, but you get the idea.

Listing 8-4. page.html

<html>
<head>
 <title>Page Title</title>
 <link rel="stylesheet" href="global.css" type="text/css" />
</head>

<body>
 <div id="container">
 <div id="header">
 <h1>Header</h1>
 </div>

Westgate_755-9C08.fm Page 111 Wednesday, March 21, 2007 1:44 PM

112 C H A P T E R 8 ■ T H E T H E M E SY S T E M

 <div id="sidebar-left">
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
 nonummy nibh euismod tincidunt ut.
 </p>
 </div>

 <div id="main">
 <h2>Subheading</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
 nonummy nibh euismod tincidunt ut.
 </p>
 </div>

 <div id="footer">
 Footer
 </div>
 </div>
</body>
</html>

Listing 8-5. global.css

#container {
 width: 90%;
 margin: 10px auto;
 background-color: #fff;
 color: #333;
 border: 1px solid gray;
 line-height: 130%;
}
#header {
 padding: .5em;
 background-color: #ddd;
 border-bottom: 1px solid gray;
}
#header h1 {
 padding: 0;
 margin: 0;
}
#sidebar-left {
 float: left;
 width: 160px;
 margin: 0;
 padding: 1em;
}

Westgate_755-9C08.fm Page 112 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 113

#main {
 margin-left: 200px;
 border-left: 1px solid gray;
 padding: 1em;
 max-width: 36em;
}
#footer {
 clear: both;
 margin: 0;
 padding: .5em;
 color: #333;
 background-color: #ddd;
 border-top: 1px solid gray;
}
#sidebar-left p { margin: 0 0 1em 0; }
#main h2 { margin: 0 0 .5em 0; }

The design is shown in Figure 8-3.

Figure 8-3. Design before it has been converted to a Drupal theme

Let’s call this new theme greyscale, so make a folder within sites/all/themes/custom called
greyscale. You might need to create the themes/custom folders if you haven’t already. Copy
page.html and global.css into the greyscale folder. Next, rename page.html to page.tpl.php
so it serves as the new page template for every Drupal page. Because the greyscale theme now
has a page.tpl.php file, you can enable it within the administrative interface. Go to Administer
➤ Site building ➤ Themes and make it the default theme.

Congratulations! You should now see your design in action. The external style sheet won’t
yet load (we’ll address that later) and any page you navigate to within your site will be the same
HTML over and over again, but this is a great start! Any page you navigate to within your site will
just serve the static contents of page.tpl.php, so . . . there’s no way to get to Drupal’s administra-
tive interface. We’ve just locked you out of your Drupal site! Whoops. Getting locked out is bound
to happen, and we’ll show you now how to recover from this situation. One solution is to rename
the folder of the theme currently enabled. In this case you can simply rename greyscale to
greyscale_ and you’ll be able to get back into the site. That’s a quick fix, but because you know
what the real problem is, instead you’ll add the proper variables to page.tpl.php so that the
dynamic Drupal content is displayed rather than the static content.

Westgate_755-9C08.fm Page 113 Wednesday, March 21, 2007 1:44 PM

114 C H A P T E R 8 ■ T H E T H E M E SY S T E M

Every PHPTemplate template file—whether page.tpl.php, node.tpl.php, block.tpl.php,
and so on—is passed a different set of dynamic content variables to use within the files. Open
up page.tpl.php and start replacing the static content with its corresponding Drupal variables.
Don’t worry, we’ll cover what these variables actually do soon.

<html>
<head>
 <title><?php print $head_title ?></title>
 <link rel="stylesheet" href="global.css" type="text/css" />
</head>

<body>
 <div id="container">
 <div id="header">
 <h1><?php print $site_name ?></h1>
 </div>

 <?php if ($sidebar_left): ?>
 <div id="sidebar-left">
 <?php print $sidebar_left ?>
 </div>
 <?php endif; ?>

 <div id="main">
 <h2><?php print $title ?></h2>
 <?php print $content ?>
 </div>

 <div id="footer">
 <?php print $footer_message ?>
 </div>
 </div>
</body>
</html>

Reload your site, and you’ll notice that the variables are being replaced with the content
from Drupal. Yay! You’ll notice that the global.css style sheet isn’t loading because the path to
the file is no longer correct. You could manually adjust the path, or you could do this the Drupal
way and gain some flexibility and benefits.

The first step is to rename global.css to style.css. By convention, Drupal automatically
looks for a style.css file for every theme. Once found, it adds this information into the $styles
variable that’s passed into page.tpl.php. So let’s update page.tpl.php with this information:

<html>
<head>
 <title><?php print $head_title ?></title>
 <?php print $styles ?>
</head>
...

Westgate_755-9C08.fm Page 114 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 115

Save your changes and reload the page. Voilà! You’ll also notice that if you view the source
code of the page, other style sheets from enabled modules have also been added, thanks to the
addition of this $styles variable. By naming your CSS file style.css, you also allow Drupal to
apply its CSS preprocessing engine to it to remove all line breaks and spaces from all CSS files,
and instead of serving multiple style sheets Drupal will now serve them as a single file. To learn
more about this feature, see Chapter 22.

There are plenty more variables to add to page.tpl.php and the other template files. So
let’s dive in!

Understanding Template Files
Some themes have all sorts of template files, while others only have page.tpl.php. So how do
you know which template files you can create and have be recognized in Drupal? What naming
conventions surround the creation of template files? You’ll learn the ins and out of working
with template files in the following section.

page.tpl.php
page.tpl.php is the granddaddy of all template files, and provides the overall page layout for the
site. Other template files are inserted into page.tpl.php, as the diagram in Figure 8-4 illustrates.

Figure 8-4. Other templates are inserted within the encompassing page.tpl.php file.

Westgate_755-9C08.fm Page 115 Wednesday, March 21, 2007 1:44 PM

116 C H A P T E R 8 ■ T H E T H E M E SY S T E M

The insertion of block.tpl.php and node.tpl.php in Figure 8-4 happens automatically by
the theme system. Remember when you created your own page.tpl.php file in the previous
example? Well, the $content variable contained the output of the node.tpl.php calls, and
$sidebar_left contained the output from the block.tpl.php calls.

What if you want to create different layouts for other pages on your site, and a single page
layout isn’t going to cut it? There are two best practices for creating additional page templates.

First, you can create additional page templates within Drupal based on the current system
URL of the site. For example, if you were to visit http://example.com/?q=user/1, PHPTemplate
would look for the following page templates in this order:

page-user-1.tpl.php
page-user.tpl.php
page.tpl.php

PHPTemplate stops looking for a page template as soon as it finds a template file to include.
The page-user.tpl.php file would execute for all user pages, whereas page-user-1.tpl.php
would only execute for the URLs of user/1, user/1/edit, and so on.

■Note Drupal looks at the internal system URL only, so if you’re using the path or pathauto modules,
which allow you to alias URLs, the page templates will still need to reference Drupal’s system URL and not
the alias.

Let’s use the node editing page at http://example.com/?q=node/1/edit as an example.
Here’s the order of template files PHPTemplate would look for:

page-node-edit.tpl.php
page-node-1.tpl.php
page-node.tpl.php
page.tpl.php

■Caution Even if you don’t output the region variables ($header, $footer, $sidebar_left,
$sidebar_right) within page.tpl.php, they are still being built. This is a performance issue because
Drupal is doing all that block building only to throw them away for a given page view. If custom page views
don’t require blocks, a better approach than excluding the variable from the template file is to head over to
the block administration interface and disable those blocks from showing on your custom pages. See Chapter 9
for more details on disabling blocks on certain pages.

■Tip To create a custom page template for the front page of your site, simply create a template file named
page-front.tpl.php.

Westgate_755-9C08.fm Page 116 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 117

If you need to make a custom page template, you can start by cloning your current
page.tpl.php, and then tweak it as needed. The following variables are passed into page templates:

• $base_path: The base path of the Drupal installation. At the very least, this will always
default to / if Drupal is installed in a root directory.

• $breadcrumb: Returns the HTML for displaying the navigational breadcrumbs on the page.

• $closure: Returns the output of hook_footer() and thus is usually displayed at the bottom
of the page.

• $css: Returns an array structure of all the CSS files to be added to the page. Use $styles
to return the HTML version of the $css array.

• $content: Returns the HTML content to be displayed. Examples include a node, an
aggregation of nodes, the content of the administrative interface, and so on.

• $directory: The relative path to the directory the theme is located in; for example,
themes/bluemarine or sites/all/themes/custom/mytheme. You’ll commonly use this
variable in conjunction with the $base_path variable to build the absolute path to your
site's theme:

<?php print $base_path . $directory ?>

• $feed_icons: Returns RSS feed links for the page.

• $footer_message: Returns the text of the footer message that was entered at Administer ➤
Site configuration ➤ Site information.

• $head: Returns the HTML to be placed within the <head></head> section. Modules append
to $head by calling drupal_set_html_head() to add additional markup such as RSS feeds.

• $head_title: The text to be displayed in the page title, between the HTML <title></title>
tags.

• $help: Help text, mostly for administrative pages. Modules can populate this variable by
implementing hook_help().

• $is_front: TRUE if the front page is currently being displayed.

• $language: The language in which the site is being displayed.

• $layout: This variable allows you to style different types of layouts, and the value for
$layout depends on the number of sidebars enabled. Possible values include none, left,
right, and both.

• $logo: The path to the logo image, as defined in the theme configuration page of enabled
themes. It’s used as follows in Drupal’s core themes:

<img src="<?php print $logo ?>" />

• $messages: This variable returns the HTML for validation errors and success notices for
forms and other messages as well. It’s usually displayed at the top of the page.

• $mission: Returns the text of the site mission that was entered at Administer ➤ Site
configuration ➤ Site information. This variable is only populated when $is_front is TRUE.

Westgate_755-9C08.fm Page 117 Wednesday, March 21, 2007 1:44 PM

118 C H A P T E R 8 ■ T H E T H E M E SY S T E M

• $node: The entire node object, available when viewing a single node page.

• $primary_links: An array containing the primary links as they have been defined at
Administer ➤ Site building ➤ Menus. Usually $primary_links is styled through the
theme('links') function as follows:

<?php print theme('links', $primary_links) ?>

• $scripts: Returns the HTML for adding the <script> tags to the page. This is also how
jQuery is loaded (see Chapter 17 for more on jQuery).

• $search_box: Returns the HTML for the search form. $search_box is empty when the
administrator has disabled the display on the theme configuration page of enabled
themes or if search module is disabled.

• $secondary_links: An array containing the secondary links as they have been defined at
Administer ➤ Site building ➤ Menus. Usually $secondary_links is styled through the
theme('links') function as follows:

<?php print theme('links', $secondary_links) ?>

• $sidebar_left: Returns the HTML for the left sidebar, including the HTML for blocks
belonging to this region.

• $sidebar_right: Returns the HTML for the right sidebar, including the HTML for blocks
belonging to this region.

• $site_name: The name of the site, which is set at Administer ➤ Site configuration ➤ Site
information. $site_name is empty when the administrator has disabled the display on
the theme configuration page of enabled themes.

• $site_slogan: The slogan of the site, which is set at Administer ➤ Site configuration ➤
Site information. $site_slogan is empty when the administrator has disabled the display
of the slogan on the theme configuration page of enabled themes.

• $styles: Returns the HTML for linking to the necessary CSS files to the page. CSS files are
added to the $styles variable through drupal_add_css().

• $tabs: Returns the HTML for displaying tabs such as the View/Edit tabs for nodes. Tabs
are usually at the top of the page in Drupal’s core themes.

• $title: The main content title, different from $head_title. When on a single node view
page $title is the title of the node. When viewing Drupal’s administration pages, $title
is usually set by the menu item that corresponds to the page being viewed (see Chapter 4 for
more on menu items).

node.tpl.php
Node templates are responsible for controlling individual pieces of content displayed within a
page. Rather than affecting the entire page, node templates only affect the $content variable
within page.tpl.php. They’re responsible for the presentation of nodes in teaser view (when
multiple nodes are listed on a single page), and also in body view (when the node fills the entire

Westgate_755-9C08.fm Page 118 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 119

$content variable in page.tpl.php and stands alone on its own page). The $page variable within
a node template file will be TRUE when you’re in body view or FALSE if you’re in teaser view.

The node.tpl.php file is the generic template that handles the view of all nodes. What if you
want a different template for, say, blogs than forum posts? How can you make node templates
for a specific node type rather than just a generic catch-all template file?

The good news is that node templates offer a refreshing level of granularity that’s not
entirely obvious out of the box. Simply cloning node.tpl.php and renaming the new file to
node-nodetype.tpl.php is enough for PHPTemplate to choose this template over the generic
one. So theming blog entries is as simple as creating node-blog.tpl.php. Any node type you
create via Administer ➤ Content management ➤ Content types can have a corresponding node
template file in the same fashion. You can use the following default variables in node templates:

• $content: The body of the node, or the teaser if it’s a paged result view.

• $date: The formatted date the node was created.

• $links: The links associated with a node, such as “read more” and “add comment.”
Modules add additional links by implementing hook_link().

• $name: Formatted name of the user who authored the page, linked to his or her profile.

• $node: The entire node object and all its properties.

• $node_url: The permanent URI to this node.

• $page: TRUE if the node is being displayed by itself as a page. FALSE if it is on a multiple
node listing view.

• $taxonomy: An array of the node’s taxonomy terms.

• $teaser: Boolean to determine whether or not the teaser is displayed. This variable can
be used to indicate whether $content consists of the node body (FALSE) or teaser (TRUE).

• $terms: HTML containing the taxonomy terms associated with this node. Each term is
also linked to its own taxonomy term pages.

• $title: Title of the node. Will also be a link to the node’s body view when on a multiple
node listing page.

• $submitted: “Submitted by” text. The administrator can configure display of this infor-
mation in the theme configuration page on a per-node-type basis.

• $picture: HTML for the user picture, if pictures are enabled and the user picture is set.

Often the $content variable within node template files doesn’t structure the data the way
you’d like it to. This is especially true when using contributed modules that extend a node’s
attributes, such as Content Construction Kit (CCK) field-related modules.

Luckily, PHPTemplate passes the entire node object to the node template files. If you write
the following debug statement at the top of your node template file and reload a page containing
a node, you’ll discover all the properties that make up the node. It’s probably easier to read if
you view the source of the page you browse to.

Westgate_755-9C08.fm Page 119 Wednesday, March 21, 2007 1:44 PM

120 C H A P T E R 8 ■ T H E T H E M E SY S T E M

<pre>
 <?php print_r($node) ?>
</pre>

Now you can see all the components that make up a node, access their properties directly,
and thus mark them up as desired, rather than work with an aggregated $content variable.

■Caution When formatting a node object directly, you also become responsible for the security of your
site. Please see Chapter 20 to learn how to wrap user-submitted data in the appropriate functions to prevent
XSS attacks.

block.tpl.php
Blocks are listed on Administer ➤ Site building ➤ Blocks and are wrapped in the markup
provided by block.tpl.php. If you’re not familiar with blocks, please see Chapter 9 for more
details. Like the page template and node template files, the block system uses a suggestion
hierarchy to find the template file to wrap blocks in. The hierarchy is as follows:

block-modulename-delta.tpl.php
block-modulename.tpl.php
block-region.tpl.php
block.tpl.php

In the preceding sequence, modulename is the name of the module that implements the
block. For example the “Who’s Online” block is implemented by user.module. Blocks created
by the site administrator are always tied to the block module. If you don’t know the module
that implemented a given block, you can find all the juicy details by doing some PHP debug-
ging. By typing in the following one-liner at the top of your block.tpl.php file, you print out the
entire block object for each block that’s enabled on the current page:

<pre>
 <?php print_r($block); ?>
</pre>

This is easier to read if you view the source code of the web browser page. Here’s what it
looks like for the “Who’s Online” block:

stdClass Object
(
 [module] => user
 [delta] => 3
 [theme] => bluemarine
 [status] => 1
 [weight] => 0
 [region] => footer
 [custom] => 0
 [throttle] => 0

Westgate_755-9C08.fm Page 120 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 121

 [visibility] => 0
 [pages] =>
 [title] =>
 [subject] => Who's online
 [content] => There are currently ...
)

Now that you have all the details of this block, you can easily construct one or more of the
following block template files, depending on the scope of what you want to target:

block-user-3.tpl.php // Target just the Who's Online block.
block-user.tpl.php // Target all block output by user module.
block-footer.tpl.php // Target all blocks in the footer region.
block.tpl.php // Target all blocks on any page.

Here’s a list of the default variables you can access within block template files:

• $block: The entire block object.

• $block_id: An integer that increments each time a block is generated and the block
template file is invoked.

• $block_zebra: Whenever $block_id is incremented it toggles this variable back and forth
between “odd” and “even.”

comment.tpl.php
The comment.tpl.php template file adds markup to comments. It’s not as easy as it is with nodes to
tell Drupal to mark up blog comments differently from forum comments. It can be done, but
requires programming and delving into the phptemplate_variables() function. The following
variables are passed into the comment template:

• $author: Hyperlink author name to the author’s profile page, if he or she has one.

• $comment: Comment object containing all comment attributes.

• $content: The body of the comment.

• $date: Formatted creation date of the post.

• $links: Contextual links related to the comment such as “edit, “reply,” and “delete.”

• $new: Returns “new” for a comment yet to be viewed by the currently logged in user and
“updated” for an updated comment. You can change the text returned from $new by
overriding theme_mark() in includes/theme.inc. Drupal doesn’t track which comments
have been read or updated for anonymous users.

• $picture: HTML for the user picture. You must enable picture support at Administer ➤
User management ➤ User settings, and you must check “User pictures in comments” on
each theme’s configuration page for enabled themes. Finally, either the site administrator
must provide a default picture or the user must upload a picture so there is an image
to display.

Westgate_755-9C08.fm Page 121 Wednesday, March 21, 2007 1:44 PM

122 C H A P T E R 8 ■ T H E T H E M E SY S T E M

• $submitted: “Submitted by” string with username and date.

• $title: Hyperlink title to this comment.

box.tpl.php
The box.tpl.php template file is one of the more obscure template files within Drupal. It’s used
in Drupal core to wrap the comment submission form and search results. Other than that, it
doesn’t have much use. It serves no function for blocks, as one might erroneously think (because
blocks created by the administrator are stored in a database table named boxes). You have access
to the following default variables within the box template:

• $content: The content of a box.

• $region: The region in which the box should be displayed. Examples include header,
sidebar-left, and main.

• $title: The title of a box.

Advanced Drupal Theming
In the previous section you learned about the different template files Drupal looks for when it’s
putting your theme together. You learned how to swap out page templates and how to create
node-type-specific templates and even block-specific template files. In other words, you’ve
acquired the knowledge to build out 80 percent of your custom theme.

What about the other 20 percent? How do you theme Drupal’s forms? How do you tweak
something as simple as the breadcrumb trail? In this section we’ll answer those questions and
teach you how to become a Drupal theming ninja. You’ll start by learning the theming ninja’s
weapon of choice: the template.php file.

The template.php file is the place to wire up custom template files, define new block regions,
override Drupal’s default theme functions, and intercept and create custom variables to pass
along to template files.

Overriding Theme Functions
The core philosophy behind Drupal’s theme system is similar to that of the hook system. By
adhering to a naming convention, functions can identify themselves as theme-related functions
that are responsible for formatting and returning your site’s content. Themeable functions are
identifiable by their function names, which all begin with theme_. This naming convention
gives Drupal the ability to create a function-override mechanism for all themeable functions.
Designers can instruct Drupal to execute an alternative function which takes precedence over
the theme functions that module developers expose. For example, let’s examine how this process
works when building the site’s breadcrumb trail.

Westgate_755-9C08.fm Page 122 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 123

Open up includes/theme.inc and examine the functions inside that file. Almost every
function in there begins with theme_, which is the telltale sign it can be overridden. In particular,
let’s examine theme_breadcrumb():

/**
 * Return a themed breadcrumb trail.
 *
 * @param $breadcrumb
 * An array containing the breadcrumb links.
 * @return a string containing the breadcrumb output.
 */
function theme_breadcrumb($breadcrumb) {
 if (!empty($breadcrumb)) {
 return '<div class="breadcrumb">'. implode(' È ', $breadcrumb) .'</div>';
 }
}

This function controls the HTML for the breadcrumb navigation within Drupal. Currently
it adds a right-pointing double-arrow separator between each item of the trail. Suppose you
want to change the div tag to a span and use an asterisk (*) instead of a double arrow. How
should you go about it? One solution would be to edit this function within theme.inc, save it,
and call it good. (No! No! Do not do this!) There are better ways.

Have you ever seen how these theme functions are invoked within core? You’ll never see
theme_breadcrumb() called directly. Instead, it’s always wrapped inside the theme() helper
function.

You’d expect the function to be called as follows:

theme_breadcrumb($breadcrumb)

But it’s not. Instead, you’ll see developers use the following invocation:

theme('breadcrumb', $breadcrumb);

This generic theme() function is responsible for initializing the theme layer and the
dispatching of function calls to the appropriate places, bringing us to the more elegant solu-
tion to our problem. The call to theme() instructs Drupal to look for the breadcrumb functions
shown in Figure 8-5, in this order.

Assuming the theme you’re using is bluemarine, which is a PHPTemplate-based theme,
then Drupal would look for the following:

bluemarine_breadcrumb()
phptemplate_breadcrumb()
theme_breadcrumb()

Westgate_755-9C08.fm Page 123 Wednesday, March 21, 2007 1:44 PM

124 C H A P T E R 8 ■ T H E T H E M E SY S T E M

Figure 8-5. How theme overriding works

To tweak the Drupal breadcrumbs, create an empty template.php file in your current
theme’s folder and copy and paste the theme_breadcrumb() function in there from theme.inc.
Be sure to include the starting <?php tag. Also, rename the function from theme_breadcrumb to
the-name-of-your-theme_breadcrumb.

<?php
/**
 * Return a themed breadcrumb trail.
 *
 * @param $breadcrumb
 * An array containing the breadcrumb links.
 * @return a string containing the breadcrumb output.
 */
function mytheme_breadcrumb($breadcrumb) {
 if (!empty($breadcrumb)) {
 return ''. implode(' * ', $breadcrumb) .'';
 }
}

Westgate_755-9C08.fm Page 124 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 125

The next time Drupal is asked to format the breadcrumb trail, it’ll find your function first
and use it instead of the default theme_breadcrumb() function, and breadcrumbs will contain
your asterisks instead of Drupal’s double arrows. Pretty slick, eh? And you haven’t touched a
line of core code. By passing all theme function calls through the theme() function, Drupal will
always check if the current theme has overridden any of the theme_ functions and call those
instead. Developers, take note: any parts of your modules that output HTML or XML should only be
done within theme functions so they become accessible for themers to override. Take user.module,
for example (see Figure 8-6).

Figure 8-6. Modules expose theme-related functions that can be overriden at the theme level. The
custom theme function mytheme_user_picture() overrides the default function theme_user_
picture() and is called instead.

Defining Additional Template Files
If you’re working with a designer, telling him or her to “just go in the code and find the theme-
able functions to override” is out of the picture. Fortunately, there’s another way to make this
more accessible to designer types. You can instead map themeable functions to their own
template files. We’ll demonstrate with our handy breadcrumb example.

First, create a file within your theme directory named breadcrumb.tpl.php. This is the new
template file for breadcrumbs. Because we wanted to change the <div> tag to a tag, go
ahead and populate the file with the following:

<?php print $breadcrumb ?>

Westgate_755-9C08.fm Page 125 Wednesday, March 21, 2007 1:44 PM

126 C H A P T E R 8 ■ T H E T H E M E SY S T E M

That’s easy enough for a designer to edit. Now you need to let Drupal know to call
this template file when looking to render its breadcrumbs. Inside template.php, override
theme_breadcrumb() as you did previously, but this time you’re going to tell this function to use
the template file instead of just the function:

function mytheme_breadcrumb($breadcrumb) {
 if (!empty($breadcrumb)) {
 $variables = array(
 'breadcrumb' => implode(' * ', $breadcrumb)
);
 return _phptemplate_callback('breadcrumb', $variables);
 }
}

The magic inside this function is happening with _phptemplate_callback(). Its first parameter
is the name of the template file to look for, and the second parameter is an array of variables to
pass to the template file. You can create and pass along as many variables as you need into your
template files.

Adding and Manipulating Template Variables
The question becomes: if you can make your own template files and control the variables
being sent to them, how can you manipulate or add variables being passed into page and
node templates?

Every call to load a template file passes through the phptemplate_callback() function to
which you were just introduced. This function is responsible for aggregating the variables to pass
along to the correct template file, and these variables can come from three different locations:

• The $variables array passed in as a second parameter to _phptemplate_callback().

• The default variables appended to every template file via _phptemplate_default_
variables() in phptemplate.engine.

• The variables returned from _phptemplate_variables(). This function doesn’t exist in
Drupal by default, and it’s where you can manipulate the variables for every template
file within your theme before it’s sent to the template file.

Figure 8-7 shows the big picture of how this ties into the larger theme system.

Westgate_755-9C08.fm Page 126 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 127

Figure 8-7. Developers can intercept and manipulate the variables sent to template files through
the _phptemplate_variables() function.

Westgate_755-9C08.fm Page 127 Wednesday, March 21, 2007 1:44 PM

128 C H A P T E R 8 ■ T H E T H E M E SY S T E M

A common usage of _phptemplate_variables() is to set a variable when someone is visiting
the site and that person is logged in. Add the following code to your template.php file:

/**
 * Intercept template variables.
 *
 * @param $hook
 * The name of the theme function being executed.
 * @param $vars
 * An array of variables passed to the template file.
 */
function _phptemplate_variables($hook, $vars = array()) {
 switch ($hook) {
 // Send a new variable, $logged_in, to page.tpl.php to tell us if the current
 // user is logged in or out.
 case 'page':
 // Get the currently logged in user.
 global $user;

 // An anonymous user has a user ID of zero.
 if ($user->uid > 0) {
 // The user is logged in.
 $vars['logged_in'] = TRUE;
 }
 else {
 // The user is not logged in.
 $vars['logged_in'] = FALSE;
 }
 break;
 }

 return $vars;
}

In the preceding code, you created a new variable to be passed into the page theme hook,
or page.tpl.php for all intents and purposes. You set $logged_in to TRUE when a user is logged
in and FALSE when an anonymous user is visiting the site. Another common variable to set is to
check when an author is creating a comment on a post he or she has written, so it can be styled
differently. Here’s how to do that:

function _phptemplate_variables($hook, $vars = array()) {
 switch ($hook) {
 // Send a new variable, $logged_in, to page.tpl.php to tell us if the current
 // user is logged in or not.
 case 'page':
 // Get the currently logged in user.
 global $user;

Westgate_755-9C08.fm Page 128 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 129

 // An anonymous user has a user id of zero.
 if ($user->uid > 0) {
 // The user is logged in.
 $vars['logged_in'] = TRUE;
 }
 else {
 // The user is not logged in.
 $vars['logged_in'] = FALSE;
 }
 break;

 case 'comment':
 // We load the node object to which the current comment is attached.
 $node = node_load($vars['comment']->nid);
 // If the author of this comment is equal to the author of the node,
 // we set a variable; then in our theme we can theme this comment
 // differently so it stands out.
 $vars['author_comment'] = $vars['comment']->uid == $node->uid ? TRUE
 : FALSE;
 break;
 }

 return $vars;
}

Now in comment.tpl.php you can check the value of $author_comment and set a special CSS
class based on its value.

■Note One of the variables you can change within _phptemplate_variables() is
$vars['template_file'], which is the name of the template file Drupal is about to call. If you need to
load an alternate template file based on a more complex condition, this is the place to do it.

Defining New Block Regions
Regions in Drupal are areas in themes where blocks can be placed. You assign blocks to regions
and organize them within the Drupal administrative interface at Administer ➤ Site building ➤
Blocks.

The default regions used in themes are left sidebar, right sidebar, header, and footer,
although you can create as many regions as you want. Once declared, they’re made available to
your page template files (for example, page.tpl.php) as a variable. For instance, use <?php print
$header ?> for the placement of the header region. You create additional regions by creating a
function named name-of-your-theme_regions() within your template.php file.

Westgate_755-9C08.fm Page 129 Wednesday, March 21, 2007 1:44 PM

130 C H A P T E R 8 ■ T H E T H E M E SY S T E M

/*
 * Declare the available regions implemented by this engine.
 *
 * @return
 * An array of regions. Each array element takes the format:
 * variable_name => t('human readable name')
 */
function mytheme_regions() {
 return array(
 'left' => t('left sidebar'),
 'right' => t('right sidebar'),
 'content_top' => t('content top'),
 'content_bottom' => t('content bottom'),
 'header' => t('header'),
 'footer' => t('footer')
);
}

To print out the content top region in your page template, use <?php print $content_top ?>.

Theming Drupal’s Forms
Changing the markup within Drupal forms isn’t as easy as creating a template file, because
forms within Drupal are dependent on their own API. Chapter 10 covers how to map theme
functions to forms in detail.

Summary
After reading this chapter you should be able to

• Understand what theme engines and themes are

• Understand how PHPTemplate works within Drupal

• Create template files

• Override theme functions

• Manipulate template variables

• Create new page regions for blocks

Westgate_755-9C08.fm Page 130 Wednesday, March 21, 2007 1:44 PM

